博客
关于我
强烈建议你试试无所不能的chatGPT,快点击我
动态规划笔试题
阅读量:5773 次
发布时间:2019-06-18

本文共 3666 字,大约阅读时间需要 12 分钟。

1、最长公共子序列、最长公共子串

最长公共子序列(Longest-Common-Subsequence,LCS)

dp[i][j]:dp[i][j]表示长度分别为i和j的序列X和序列Y构成的LCS的长度

dp[i][j] = 0,如果i=0 或 j=0 
dp[i][j] = dp[i-1][j-1] + 1,如果 X[i-1] = Y[i-1] 
dp[i][j] = max{ dp[i-1][j], dp[i][j-1] },如果 X[i-1] != Y[i-1]
LCS长度为 dp[Xlen][Ylen]

View Code

最长公共子串(Longest-Common-Substring,LCS)

dp[i][j]:表示X[0-i]与Y[0-j]的最长公共子串长度

dp[i][j] = dp[i-1][j-1] + 1,如果 X[i] == Y[j]
dp[i][j] = 0,如果 X[i] != Y[j]
初始化:i==0或者j==0,如果X[i] == Y[j],dp[i][j] = 1;否则dp[i][j] = 0。

最长公共子串的长度为max(dp[i][j])。

View Code

2、数组中最长递增子序列:如在序列1,-1,2,-3,4,-5,6,-7中,最长递增序列为1,2,4,6。

时间复杂度O(N^2)的算法:

LIS[i]:表示数组前i个元素中(包括第i个),最长递增子序列的长度
LIS[i] = max{ 1, LIS[k]+1 }, 0 <= k < i, a[i]>a[k]

View Code

时间复杂度O(NlogN)的算法:

辅助数组b[],用k表示数组b[]目前的长度,算法完成后k的值即为LIS的长度。
初始化:b[0] = a[0],k = 1
从前到后扫描数组a[],对于当前的数a[i],比较a[i]和b[k-1]:
如果a[i]>b[k-1],即a[i]大于b[]最后一个元素,b[]的长度增加1,b[k++]=a[i];
如果a[i]<b[k-1],在b[1]...b[k]中二分查找第一个大于a[i]的数b[j],修改b[j]=a[i]。
LIS的长度为k

View Code

3、计算字符串的相似度(编辑距离)

为了判断字符串的相似程度,定义了一套操作方法来把两个不相同的字符串变得相同,具体的操作方法为: 1.修改一个字符。2.增加一个字符。3.删除一个字符。

比如,对于“abcdefg”和“abcdef”两个字符串来说,可以通过增加/减少一个“g“的方式来达到目的。上面的两种方案,都仅需要一次操作。把这个操作所需要的次数定义为两个字符串的距离,给定任意两个字符串,写出一个算法来计算出它们的距离。

设 L(i,j)为使两个字符串和Ai和Bj相等的最小操作次数。

当ai==bj时 显然 L(i,j) = L(i-1,j-1)
当ai!=bj时 L(i,j) = min( L(i-1,j-1), L(i-1,j), L(i,j-1) ) + 1

View Code

4、8*8的棋盘上面放着64个不同价值的礼物,每个小的棋盘上面放置一个礼物(礼物的价值大于0),一个人初始位置在棋盘的左上角,每次他只能向下或向右移动一步,并拿走对应棋盘上的礼物,结束位置在棋盘的右下角,请设计一个算法使其能够获得最大价值的礼物。

动态规划算法:   

dp[i][j] 表示到棋盘位置(i,j)上可以得到的最大礼物值   
dp[i][j] = max( dp[i][j-1] , dp[i-1][j] ) + value[i][j]  (0<i,j<n)  

View Code

5、给定一个整数数组,求这个数组中子序列和最大的最短子序列,如数组a[]={1,2,2,-3,-5,5}子序列和最大为5,最短的为a[5]。

动态规划   

sum[i] = max(sum[i-1]+a[i], a[i]) (sum[0]=a[0],1<=i<=n)  
len[i] = max(len[i-1]+1, 0) (len[0]=0,1<=i<=n)

View Code

6、子数组的最大和

状态方程:

Start[i] = max{A[i], Start[i-1]+A[i]}
All[i] = max{Start[i], All[i-1]}

View Code

因为Start[i-1]只在计算Start[i]时使用,而且All[i-1]也只在计算All[i]时使用,所以可以只用两个变量就够了,节省空间。

View Code

7、在数组中,数字减去它右边的数字得到一个数对之差。求所有数对之差的最大值。例如在数组{2, 4, 1, 16, 7, 5, 11, 9}中,数对之差的最大值是11,是16减去5的结果。

思路:假设f[i]表示数组中前i+1个数的解,前i+1个数的最大值为m[i]。则状态转移方程:

f[i] = max(f[i-1], m[i-1] - a[i]), m[i] = max(m[i-1],a[i])。问题的解为f[n-1]。

View Code

上述代码用了两个辅助数组,其实只需要两个变量,前i个数的情况只与前i-1个数的情况有关。在“子数组的最大和问题”中,也使用过类似的技术。

View Code

8、从一列数中筛除尽可能少的数使得从左往右看,这些数是从小到大再从大到小的。

双端 LIS 问题,用 DP 的思想可解,目标规划函数 max{ b[i] + c[i] - 1 }, 其中 b[i] 为从左到右,0--i 个数之间满足递增的数字个数;c[i] 为从右到左,n-1--i个数之间满足递增的数字个数。最后结果为 n-max 。

View Code

9、从给定的N个正数中选取若干个数之和最接近M

解法:转换成01背包问题求解,从正整数中选取若干个数放在容量为M的背包中。

View Code

从给定的N个正数中选取若干个数之和为M

View Code

10、将一个较大的钱,不超过1000的人民币,兑换成数量不限的100、50、10、5、2、1的组合,请问共有多少种组合呢?

解法:01背包中的完全背包问题(即每个物品的数量无限制)

dp[i][j]:表示大小为j的价值用最大为money[i]可表示的种类数

View Code

11、捞鱼问题:20个桶,每个桶中有10条鱼,用网从每个桶中抓鱼,每次可以抓住的条数随机,每个桶只能抓一次,问一共抓到180条的排列有多少种。

分析:看看这个问题的对偶问题,抓取了180条鱼之后,20个桶中剩下了20条鱼,不同的抓取的方法就对应着这些鱼在20个桶中不同的分布,于是问题转化为将20条鱼分到20个桶中有多少中不同的分类方法(这个问题当然也等价于180条鱼分到20个桶中有多少种不同的方法)。

dp[i][j]:前i个桶放j条鱼的方法共分为11种情况:前i-1个桶放j-k(0<=k<=10)条鱼的方法总和。我们可以得到状态方程:f(i,j) = sum{ f(i-1,j-k), 0<=k<=10}

View Code

12、n个骰子的点数:把n个骰子扔在地上,所有骰子朝上一面的点数之和为S。输入n,打印出S的所有可能的出现的值。

F(k,n) 表示k个骰子点数和为n的种数,k表示骰子个数,n表示k个骰子的点数和

对于 k>0, k<=n<=6*k
F(k,n) = F(k-1,n-6) + F(k-1,n-5) + F(k-1,n-4) + F(k-1,n-3) + F(k-1,n-2) + F(k-1,n-1)  
对于 n<k or n>6*k
F(k,n) = 0 
当k=1时, F(1,1)=F(1,2)=F(1,3)=F(1,4)=F(1,5)=F(1,6)=1

View Code

13、给定三个字符串A,B,C;判断C能否由AB中的字符组成,同时这个组合后的字符顺序必须是A,B中原来的顺序,不能逆序;例如:A:mnl,B:xyz;如果C为mnxylz,就符合题意;如果C为mxnzly,就不符合题意,原因是z与y顺序不是B中顺序。

DP求解:定义dp[i][j]表示A中前i个字符与B中前j个字符是否能组成C中的前(i+j)个字符,如果能标记true,如果不能标记false; 有了这个定义,我们就可以找出状态转移方程了,初始状态dp[0][0] = 1:

dp[i][j] = 1 如果 dp[i-1][j] == 1 && C[i+j-1] == A[i-1] 
dp[i][j] = 1 如果 dp[i][j-1] == 1 && C[i+j-1] == B[j-1]

View Code
    本文转自阿凡卢博客园博客,原文链接:http://www.cnblogs.com/luxiaoxun/archive/2012/11/15/2771605.html,如需转载请自行联系原作者
你可能感兴趣的文章
CTOR有助于BCH石墨烯技术更上一层楼
查看>>
被遗忘的CSS
查看>>
Webpack中的sourcemap以及如何在生产和开发环境中合理的设置sourcemap的类型
查看>>
做完小程序项目、老板给我加了6k薪资~
查看>>
java工程师linux命令,这篇文章就够了
查看>>
关于React生命周期的学习
查看>>
webpack雪碧图生成
查看>>
搭建智能合约开发环境Remix IDE及使用
查看>>
Spring Cloud构建微服务架构—服务消费基础
查看>>
RAC实践采坑指北
查看>>
runtime运行时 isa指针 SEL方法选择器 IMP函数指针 Method方法 runtime消息机制 runtime的使用...
查看>>
LeetCode36.有效的数独 JavaScript
查看>>
Scrapy基本用法
查看>>
PAT A1030 动态规划
查看>>
自制一个 elasticsearch-spring-boot-starter
查看>>
软件开发学习的5大技巧,你知道吗?
查看>>
java入门第二季--封装--什么是java中的封装
查看>>
【人物志】美团前端通道主席洪磊:一位产品出身、爱焊电路板的工程师
查看>>
一份关于数据科学家应该具备的技能清单
查看>>
机器学习实战_一个完整的程序(一)
查看>>